

The universAAL UI Framework

saied.tazari@igd.fraunhofer.de

Note

the abbreviation "UI" throughout this presentation stands for

User Interaction

and not for user interface

Outline

- □ Rationale behind the universAAL Approach
- ☐ The universAAL Approach
- Resources

RATIONALE

From HCI to HEI!

- □ HCI: the traditional Human-Computer Interaction
 - the interaction is usually assumed to be bound to one single computer and its peripherals.
- □ HEI: Human-Environment Interaction
 - Implicit interaction
 - Explicit interaction

Breaking out of the Virtual Realm into the Physical World

T. Berners-Lee, J. Hendler, O. Lassila: The Semantic Web

The Notion of Channel

The Importance of Explicit User Interaction (I)

□ Explicit UI over I/O channels long enough in the shadow of "implicit interaction" over sensing channels in AmI

The Importance of Explicit User Interaction (II)

- □ Progresses that help explicit UI become more important
 - proliferation of (multi-)touch sensing, HD displays, & displays embedded in all possible devices
 - new interaction forms supported by special devices with specific sensors
 - qualitative progresses in
 - speech recognition
 - natural language processing
 - gesture recognition
 - socio-political pressure on "accessibility for all"

I/O Devices in emerging Smart Homes

- living room TV
- sleeping room TV
- a display in the entrance
- a display integrated in the fridge door
- mirrors capable of becoming displays
- microphone arrays installed in all rooms
- loudspeakers installed in all rooms
- phones providing displays, microphones, (loud)speakers
- hi-fi providing loudspeakers

- **→** An infrastructure of available I/O channels

Smart Environments as Open Distributed Systems

The Consequence

Separating applications from the management of the I/O channels

("UI Handler" is the term used for the managers of the I/O channels)

UIM Derived Goals

- > We need to create a UI model for
 - describing user interfaces in a modality-neutral manner
 - performing personalized and context-aware adaptation
- ➤ Intelligent (personalized and context-aware) brokerage between applications and UI Handlers (I/O channel managers)
- > Introduce a framework for
 - modality fusion when capturing user input from different input channels
 - modality fission when using different output channels for presenting system output to human users

APPROACH

UI Protocol

Approach

UI HANDLERS & THE MANAGEMENT OF I/O CHANNELS

Channel Binding

I/O Channels are bound to

- A certain location
- A certain modality
- Possibly, a "privacy level"
- Important for adaptation: which channels are more appropriate for a given user in a given situation?!

PhysicalThing

is a

Input Channel

for a concrete

Accessing Channels

Relationship to UI Handlers

Approach

ADAPTATION FAMEWORK

Context Awareness: using the rights channels

Context Awareness: Follow me without loss of data

Supporting the UI Bus in Adaptation

Parameters provided by the app

- Addressed user
- Content language & privacy level
- Dialog priority

Parameters added by the UI Framework

- the presentation location and modality
- access impairments to be considered
- modality-specific recommendations

Capabilities of the UI Handlers

- appropriateness for certain access impairments
- supported languages, modalities & privacy levels
- locations where output can be presented
- modality-specific tuning capabilities

(recall that UI handlers are the managers of I/O channels & that channels are bound to specific modalities, privacy levels & locations)

Approach

DESCRIBING A DIALOG

25

Need for Declarative Languages

A direct consequence of separating application layer from the presentation layer

analogy to the WWW

browsers

language = HTML protocol = HTTP

Web applications

The problem with HTML

- Not really modality-neutral
- Sometimes posing certain layout
- More abstract and neutral languages investigated since more than 10 years:
 - UIML
 - TERESA XML
 - UsiXML
 - SMIL
 - EMMA
 - XISL
 - XForms

XForms - Separation of Values from Controls

- XForms separates data and the underlying model from presentation:
 - The model specifies the values being collected (the instance), and their related logic
 - Types, restrictions
 - Initial values, Relations between values
 - Logical UI Controls with binding to the model

Source: www.w3.org/2006/Talks/05-26-steven-XForms/

universAAL Dialog Descriptions

- Current solution inspired by XForms
 - Apparently the most advanced form-based solution
 - Separating the form UI description from the form data

- Define a "dialog package" based on XForms UI controls
- Use own RDF-based data model instead of adding a new complexity

The Dialog Package

ioControls, stdButtons, submits

Approach

MISCELLANEOUS

31

More on the Dialog Manager

- □ Coherent representation of the whole system
 - Management of Dialogs
 - Per user & priority-based management of dialog queues
 - Suspending dialogs and continuing later

32

- Providing the system main menu
- Handling context-free input

Support for Multimodality

□ Delegated to UI handles...

- ☐ An example developed within PERSONA
 - On the input side: fusion of speech & gesture

33

• On the output side: speech synchronized with visual feedback

RESOURCES

Resources

- www.universaal.org, esp.
 - all deliverables immediately after release
 - Newsletters, publicity material, comic
- <u>depot.universaal.org</u>, the entry point for developers (reachable also through the home page)
 - Getting started developing AAL applications
 - Learning more about the platform & contributing to the development of the platform
- <u>forge.universaal.org</u> (reachable also through the Developer Depot)
 with
 - source codes, Javadocs, & Wiki Pages
 - forum discussions

THANK YOU FOR PAYING ATTENTION!

Questions?

Mohammad-Reza (Saied) Tazari Fraunhofer-Institut für Graphische Datenverarbeitung IGD Fraunhoferstraße 5 64283 Darmstadt

Tel +49 6151 155 – 228 | Fax – 480 saied.tazari@igd.fraunhofer.de www.igd.fraunhofer.de

