空間スクリーン方式を利用したホログラフィック投影システム Holographic Projection System utilizing the Spatial Screen

高野 邦彦¹ 須賀 凛太朗¹ 今野 哲史² 佐藤 甲癸³ 浅井 紀久夫⁴ Kunihiko TAKANO¹ Rintaro SUGA¹ Satoshi KON-NO² Koki SATO³ and Kikuo ASAI[‡]

¹東京都立産業技術高等専門学校²群馬大学³元湘南工科大学⁴放送大学 ¹Tokyo Metropolitan College of Industrial Technology, ²Gunma University, ³Former of Shonan Institute of Technology, ⁴Open University of Japan

Abstract In this paper, noting the effect of cavity bubble, which is also applied to the high-pressure operated washer, we have studied a spatial screen utilizing cavity bubble as a display of holographic projected images. Cavity bubble suggests a phenomenon such that the water boils and turns to the vapor by a sudden lowering of the pressure in the underwater and many small-sized bubbles are produced in the underwater. Here, to produce bubbles stably, we first dissolve the air in the water by imposing the high water-pressure, and then, pour it into the water-tank rapidly using the aspirator whose absorbing entrance is closed tightly. Like this way, by introducing a stable lowering process of the water-pressure, we may be able to produce a constant amount of bubbles continuously. In this report, we shall introduce a new process adopted a cavity bubble screen and study its effectiveness in the projecting process of holographic images. As this result, we have seen that a spatial screen utilizing cavity bubble will be expected to have a more improved quality in the brightness of the images than before in the display of the projected holographic images.

1. はじめに

全方向視差をもち、立体像を空間にそのまま表示で きる動画ホログラフィは、将来の立体 TV を開発する 上で究極の手法であるといわれている. ホログラフィ を利用して立体像を再生する場合には, 画素構造を持 つ光空間変調素子(以下, SLM)を利用するため,得ら れる像のサイズと視域角は, SLM の持つ画素ピッチの 細かさと画素数に比例する[1.2].したがって、現在、流 通している SLM の性能をそのまま用いた場合には,得 られる像の視域が狭く,かつ大きさも小さくなる等, 表示像への影響は無視できないと考えられる.この課 題を解決するためには, 立体像を空間に投影する方法 が有効であると考えられる[3-5].その際に本来はスクリ ーンがないことが望ましいが,上述の SLM の特性を補 うためには、長時間にわたって安定した空間スクリー ンを構成することが必要不可欠となる.この観点から, 水中で生成したマイクロバブル[6]をミストに代わる" 空間スクリーン"として活用する投影法を検討した[7,8]. しかし、これらの方法ではバブル発生機構の微調整が 困難である上に、バブルそのものの生成量が不足して いたため,再生像の輝度向上が課題であったと考えら れる. そこで, 高圧洗浄機等で活用されるキャビテー ション方式によるバブル生成法[9-11]に着目し、この方 法をホログラフィック再生像を投影するための空間ス クリーンとして用いるシステムの構成方法とその効果 について検討した.本手法では,バブルの流動性を軽 減させるため,水圧を高めて空気を溶解した水を,吸 気口を密閉したアスピレータにより高速で水槽内へ流

し込む方法を採用した.このように水の減圧状態を安 定して継続させることにより,一定量のバブルを連続 的に生成させている.本稿では,上述のキャビテーシ ョンバブルを利用したホログラフィ再生像投影装置の 構成方法について述べ,それがホログラフィック再生 像に及ぼす影響について検討する.

2. 提案手法による空間像投影システム

2.1. システムの全体構成

本稿で構成した立体像表示システムの全体構成を 図1に示す.

図1立体像再生システムの全体構成 本システムは、レーザ光源(射出口位置にレンズを内 蔵または装着), PC制御によるDMD(Digital Micro-mirror Device)パネル、次節で述べるスクリー ン装置から構成される.本手法では水中に発生したキ ャビテーションバブルで再生光が散乱され_[12,13],文献 [7.8]と同様に像が投影されるシステムとなっている.図 中の"スクリーン生成装置"は 2.2.2 で述べるバブル発 生機構に対応する.バブルを利用したスクリーンの考 え方については次節で述べる.

2.2. 提案手法に基づくスクリーン装置

マイクロバブルを利用した空間像投影法は、ミスト を利用した方法等に比べ、スクリーンの空間的および 時間的な安定性が改善できる意味で有効性がある一方 で、表示像の輝度の改善が未解決となっていたと考え られる.これまでの検討結果から、像輝度を向上させ るためには、マイクロバブルの量を増やすことが必要 となることが判明している[8].したがって、表示像の 安定化を図りながら、像輝度を向上させるための検討 を行うことが重要になると考えられる.

2.2.1 キャビテーションバブルの考え方

キャビテーション効果は高圧洗浄機にも応用され ており、水中での急激な圧力低下によって、水圧が飽 和蒸気圧(20℃で 2.33kPa)以下になり,結果的に水が沸 騰して蒸気になる現象_[9,10]である.これにより,水中 に多数の細かい気泡(キャビテーションバブル)が発生 する.本稿ではベンチュリ式によりマイクロバブルを 生成した.この方法では、管路断面積の縮小と拡大を もつ流路(ベンチュリ管)に、水道蛇口から得られた 「高速で気泡を含んだ水」を通過させ、急激な圧力変 化によって気泡を激しく崩壊させてマイクロバブルを 生成させるものとなっている. 同様のことを, 水槽内 でスクリューを直接回転させる手法を用いると、1気 圧の場合においても、速度換算で 20m/s 以上の条件が 要求され、スクリーンの流動性が無視できなくなると 考えられる[11].以上の理由から、本稿では水圧を高 め,空気を溶解した水を,吸気口を密閉したアスピレ ータ(後述)へ高速で水槽内へ流し込む方法でバブル を生成した.このようにして,水の減圧状態を安定し て継続させることにより、一定量のバブルを連続的に 生成している.

2.2.2 バブル発生装置の考え方

キャビテーションバブルを利用したスクリーンシ ステムの構成例を図2に示す.従来法_[7,8]との比較を行 う目的で,1辺長が20cmの立方体(最大容積は7L)の水 槽を使用し,次の条件でスクリーンを構成した.

(1)給水ホース(図 1,2 の#1 に対応)を通じて、水道口から加圧された水を取り込む.現在は、強い水圧を確保するため、水道蛇口から直接、水を取り込んでいる.
(2)水圧計(同図の#2 に対応)で水圧を確認しながら、塩ビパイプ(同図#3)を経由させ、アスピレータの入水口(同図#4)へ水を誘導する.

(3)アスピレータ(同図#4)内を通過する際に,水が減圧 され,キャビテーションバブルが生成される. (4)アスピレータの出水口から,生成したバブルが水と 共に排出される.アスピレータの吸気口を塞いでいる ため,水の減圧状態は安定して継続すると考えられる.

図2 スクリーン装置の構成例

なお,余った水が水槽内から溢れないよう,随時, 水槽内に別途設置したポンプにより水を排水した.

3. 結果及び検討

3.1. スクリーンの光学特性

ここでは、本稿で構築したスクリーン装置の光学特性、特に、スクリーン透過後の光強度の変化について 検討した結果を述べる.実験時に水道蛇口から得られ た最大水圧が 0.17MPa であったことを考慮して、アス ピレータへの流入水圧 P を 0.05Mpa, 0.10MPa, 0.15MPa の3段階で設定した.

3.1.1 キャビテーションバブルの考え方

スクリーンシステムの時間的な安定性を確認する ために、文献_[8]と同様の測定システムを構成した上で、 スクリーン内へ通過したレーザ光の強度を100ms間隔 でレーザパワーメータにより計測し、そのデータを AD変換器により PC 内へ自動取得する.なお、測定時 間は5分30秒とし、測定開始後30秒を経過した時刻 でスクリーン装置を起動している.得られた結果にお いて、バブル生成量が少ないほど、透過光強度が高く なると考えられる.このようにして得られたスクリー ン透過後の光強度の時間変化を図3に示す.

図3 スクリーン透過後の光強度の時間変化

この図において,(b)~(d)が本手法での結果であり,順 に流入水圧 P が 0.05MPa, 0.10MPa, 0.15MPa の場合を 示している. 同図(a)は気液せん断式_[8]の場合であり, 本手法での結果との比較を目的としている. これを見 ると次の傾向が見て取れる.

・従来法である気液せん断式(a)の場合には,透過光強 度が高いため,バブル生成量が少ない.

・本手法において、アスピレータへの流入水圧 P を 0.05Mpaと低い条件に調整した場合には、従来法(a)と 同様の傾向となり、バブル生成量が少ない. さらに確 認実験として、アスピレータへの流入水圧 P を最大条 件である 0.17MPaに設定したが、P が 0.15MPa の場合 との傾向差は確認できなかった.

・キャビテーション式の場合(c)~(e)では共通して,緩 やかな周期で透過光強度が変動する.この変動は排水 ポンプの動作タイミングとほぼ一致することから,排 水時に流出したバブルが透過光強度に対して影響を与 えていると考えられる.

さらに、検証の意味でバブル量を主観的に評価した. 評価用図形には図 4(a)に示すテストパターンを印刷し て水槽外面に取り付けた上で、水槽内にバブルを発生 させた様子を観察した.この結果の一例を同図の(b) ~(f)に示す.なお、(b)は従来法の気液せん断式_[8]、(c) ~(f)は提案手法においてアスピレータへの流入水圧 P を変化させた場合に対応する.この結果において、水 槽内の濁り具合が顕著に、すなわちテストパターンが 不鮮明になる程、水槽内に多くのバブルが発生すると 考えられる.

図4 バブルの生成法と発生量の関係

これを見ると次のことが分かり,図3と図4での結果に相関性が見られた.

・気液せん断式の場合は、ややバブル量が少ない.

・本手法において,水圧 P を 0.05MPa とした場合は, 濁り具合が気液せん断式の条件に近く,かつ従来法_[8] に比べてバブルが全体的に均一に広がる. ・本手法において,水圧 P を 0.10MPa に設定した場合 には,濁りが顕著となりバブル発生量が多くなる.さ らに,水圧 P を 0.15MPa を強めても傾向差はほとんど 認められない.

3.1.1 スクリーン透過後の光の空間的安定性

スクリーン上の表示位置に対する光強度が変動す ると,投影像の輝度むらの原因になる.したがって光 強度の変動量が少ないことが良いスクリーンを意味す ると考えられる.ここでは図5に示すように,スクリ ーンに右側から緑色レーザ光を入射させ,スクリーン 内を透過するレーザ光の軌跡を撮像し,輝度断面(スク リーン上での輝度分布)_[8]を求めた.なお,計測範囲は 同図に示すようにスクリーン上の中央10cm部分とし, 不要光が入らないようにした.同図システムにおいて, スクリーンが定常状態になった時刻でスクリーン上の 位置に対する輝度変化を調べた.

図 5 スクリーン上の輝度分布の取得方法 求めた輝度分布(最大輝度を1に正規化)を図6に示す.

図 6 スクリーン上の位置に対する光強度の変化

同図において(a)~(c)は本手法において,アスピレータ への流入水圧 P を変化させた場合を,また,(d)は気液 せん断式の場合を示している.なお,図5に示すよう にスクリーン位置を表す座標 x の値が大きいほど,レ ーザ光源に近い条件となっている.図6より次のこと がわかる.

・何れの場合にも、レーザ光源からの距離が近いほど スクリーン上の輝度が高くなる.これは水中に発生し たバブルによりレーザの透過光強度が徐々に低下する ことが原因と考えられる.

・従来法の気液せん断法に比べ、本手法ではスクリー

ン上の輝度が大幅に向上する.

・本手法において,アスピレータへの流入水圧 P が 0.05MPa の場合には,輝度変化は従来法とやや近い傾向となるが,その変動幅が大きくなる.

・本手法において、アスピレータへの流入水圧 P が 0.10MPa および 0.15MPa の場合には、光源位置に近づ くほどスクリーン上の輝度が緩やかに高くなるが、 0.05MPa の場合のように急激な輝度変動は発生しない.

3.2. スクリーン上での投影像特性

3.2.1 アスピレータへの流入水圧による像特性

ここでは、提案手法により得られた再生像特性の傾向について述べる. なお、評価用の再生物体には従来法(気液せん断式)_[8]との比較のため、従来法と同様の図形を用いている.スクリーン内で断層状に像が再生され、表示ボリウムが拡大される.得られた結果を赤色光($\lambda = 633$ nm)、緑色光($\lambda = 532$ nm)、青色光($\lambda = 473$ nm)により再生した結果を図7に示す.

図7本手法で得られた投影像の一例

これを見ると、アスピレータへの流入水圧 P を高め ることで、投影像の輝度が高くなる上、輝度変動を軽 減させる効果が確認できる.この原因はアスピレータ への流入水圧 P が高まることで、多量のバブルが水槽 内に満たされたためと考えられる.この点については 次節で検証する.一方でバブルが増加した影響により、 像の解像力がやや低下する傾向となり、バブル生成量 と像の解像力はトレードオフの関係になることがわか った.以上より、本実験の場合においてはアスピレー タへの流入水圧 P を 0.10MPa した場合に良好な結果が 得られた.再生波長の違いによる大きな傾向差はなか った.

3.2.2 投影像に発生する輝度変動について

前節での結果から,バブル量が増加することにより バブルの動きに起因する再生像の輝度変動が減少する ことが確認された.ここでは,提案手法と従来法8に ついて,投影像に発生する輝度変動を比較した.スク リーン装置起動後に無作為に3秒間隔で得られた再生 像の変化について一例を図8に示す.同図のマーキン グ部分を見ると,従来法ではバブルの動きにより輝点 が移動しているが,提案手法の場合には殆ど差異が認 められないことが確認できる.これより,本手法によ る輝度変動の軽減効果か伺える.水圧Pの違いによる 傾向差は確認できなかった.

図8時間経過に対する投影像の変化(比較実験)

4. むすび

本稿ではキャビテーションバブル利用のホログラ フィック像投影用スクリーン生成装置について検討し た.その結果,従来法に比べ投影像の輝度が向上し, 像の輝度変動を軽減できることが明らかになった.一 方で,水槽内に生成させるバブル量と投影像の解像力 の間にはトレードオフの関係があることがわかった. また,現在は水道の蛇口から直接,バブルを供給する システム構成としているため,これを循環型システム にする検討が必要であるが,これは今後の検討課題と したい.本研究は科学研究費補助金(課題番号: 17K00493)の一環として行われたものである.

文 献

- [1] N.Fukaya et.al ,Opt.Eng.,35,6,1545-1549,1996.
- [2] 西川他,テレビ技報,19,8,7-11,1995.
- [3] 高野他, 画電誌, 39, 2, 134-139, 2010.
- [4] 妹尾他,映情技報, 36, 12, 29-32, 2012.
- [5] 川島他,FIT 講論,13,.3,179-182, 2014.
- [6] 大成他,水工学論文集,50,1345-1350,2006.
- [7] 高野他,画電誌,45,4,478-485,2016.
- [8] 高野他, 画電次大講予, R3-1, 2016.
- [9] 前田他, パナソニック電工技報, 59, 2, 4-9, 2011.
- [10] JSME 編,海底気液二相流技術ハンドブック,2006.
- [11] K.Sugiyama, et.al., Proc. of the 3rd Symp. on Smart Control of Turbulence, 129-138, 2001.
- [12] G.Mie, Ann. Phys. Band 25, 377-445,1908.
- [13] Von Debye P., Ann. Phys. Band 30, 57-136, 1909.
- * 東京都立産業技術高等専門学校 ものづくり工学科
- 〒116-8523 東京都荒川区南千住 8-17-1

TEL.03-3801-0145 E-mail: ktakano@metro-cit.ac.jp